Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians
نویسندگان
چکیده
We study the difference analog of quotient differential operator from [Tarasov V., Uvarov F., Lett. Math. Phys. 110 (2020), 3375-3400, arXiv:1907.02117]. Starting with a space quasi-exponentials $W=\langle \alpha_{i}^{x}p_{ij}(x),\, i=1,\dots, n,\, j=1,\dots, n_{i}\rangle$, where $\alpha_{i}\in{\mathbb C}^{*}$ and $p_{ij}(x)$ are polynomials, we consider formal conjugate $\check{S}^{\dagger}_{W}$ $\check{S}_{W}$ satisfying $\widehat{S} =\check{S}_{W}S_{W}$. Here, $S_{W}$ is linear order $\dim W$ annihilating $W$, $\widehat{S}$ constant coefficients depending on $\alpha_{i}$ $\deg p_{ij}(x)$ only. construct dimension $\operatorname{ord} \check{S}^{\dagger}_{W}$, which annihilated by describe its basis discrete exponents. also similar construction for operators associated spaces quasi-polynomials, combinations functions form $x^{z}q(x)$, $z\in\mathbb C$ $q(x)$ polynomial. Combining our results bispectral duality obtained in [Mukhin E., Tarasov Varchenko A., Adv. 218 (2008), 216-265, arXiv:math.QA/0605172], relate to $(\mathfrak{gl}_{k},\mathfrak{gl}_{n})$-duality trigonometric Gaudin Hamiltonians dynamical acting polynomials $kn$ anticommuting variables.
منابع مشابه
‘degeneration of Trigonometric Dynamical Difference Equations for Quantum Loop Algebras to Trigonometric Casimir Equations for Yangians’
We show that, under Drinfeld’s degeneration [D] of quantum loop algebras to Yangians, the trigonometric dynamical difference equations [EV] for the quantum affine algebra degenerate to the trigonometric Casimir differential equations [TL] for Yangians.
متن کاملM-FUZZIFYING DERIVED OPERATORS AND DIFFERENCE DERIVED OPERATORS
This paper presents characterizations of M-fuzzifying matroids bymeans of two kinds of fuzzy operators, called M-fuzzifying derived operatorsand M-fuzzifying difference derived operators.
متن کاملwavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
The trigonometric counterpart of the Haldane Shastry Model
The hierarchy of Integrable Spin Chain Hamiltonians, which are trigonometric analogs of the Haldane Shastry Model and the associated higher conserved charges, is derived by a reduction from the trigonometric Dynamical Models of Bernard-Gaudin-Haldane-Pasquier. The Spin Chain Hamiltonians have the property of U ′ q(ĝl2)-invariance. The spectrum of the Hamiltonians and the U ′ q(ĝl2)-representati...
متن کاملDuality in Integrable Systems and Generating Functions for New Hamiltonians
Duality in the integrable systems arising in the context of Seiberg-Witten theory shows that their tau-functions indeed can be seen as generating functions for the mutually Poisson-commuting hamiltonians of the dual systems. We demonstrate that the Θ-function coefficients of their expansion can be expressed entirely in terms of the co-ordinates of the Seiberg-Witten integrable system, being, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry Integrability and Geometry-methods and Applications
سال: 2022
ISSN: ['1815-0659']
DOI: https://doi.org/10.3842/sigma.2022.081